Deformation Quantization of Hermitian Vector Bundles

نویسندگان

  • Henrique Bursztyn
  • Stefan Waldmann
چکیده

Motivated by deformation quantization, we consider in this paper -algebras A over rings C = R(i), where R is an ordered ring and i = −1, and study the deformation theory of projective modules over these algebras carrying the additional structure of a (positive) A-valued inner product. For A = C(M), M a manifold, these modules can be identified with Hermitian vector bundles E overM . We show that for a fixed Hermitian star-product onM , these modules can always be deformed in a unique way, up to (isometric) equivalence. We observe that there is a natural bijection between the sets of equivalence classes of local Hermitian deformations of C(M) and Γ(End(E)) and that the corresponding deformed algebras are formally Morita equivalent, an algebraic generalization of strong Morita equivalence of C-algebras. We also discuss the semi-classical geometry arising from these deformations. [email protected] Research supported by a fellowship from CNPq, Grant 200481/96-7. [email protected] Research supported by the Communauté française de Belgique, through an Action de Recherche Concertée de la Direction de la Recherche Scientifique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morita equivalence of Fedosov star products and deformed Hermitian vector bundles

Based on the usual Fedosov construction of star products for a symplectic manifold M we give a simple geometric construction of a bimodule deformation for the sections of a vector bundle over M starting with a symplectic connection on M and a connection for E. In the case of a line bundle this gives a Morita equivalence bimodule where the relation between the characteristic classes of the Morit...

متن کامل

Noncommutative field theories from a deforma - tion point of view

In this review we discuss the global geometry of noncommutative field theories from a deformation point of view: The space-times under consideration are deformations of classical space-time manifolds using star products. Then matter fields are encoded in deformation quantizations of vector bundles over the classical space-time. For gauge theories we establish a notion of deformation quantizatio...

متن کامل

Hermitian-einstein Metrics for Vector Bundles on Complete Kähler Manifolds

In this paper, we prove the existence of Hermitian-Einstein metrics for holomorphic vector bundles on a class of complete Kähler manifolds which include Hermitian symmetric spaces of noncompact type without Euclidean factor, strictly pseudoconvex domains with Bergman metrics and the universal cover of Gromov hyperbolic manifolds etc. We also solve the Dirichlet problem at infinity for the Hermi...

متن کامل

Complex Line Bundles over Simplicial Complexes and their Applications

Discrete vector bundles are important in Physics and recently found remarkable applications in Computer Graphics. This article approaches discrete bundles from the viewpoint of Discrete Differential Geometry, including a complete classification of discrete vector bundles over finite simplicial complexes. In particular, we obtain a discrete analogue of a theorem of André Weil on the classificati...

متن کامل

Super{geometric Quantization Stage 1 | Prequantization. Let M Be a Poisson Manifold with the Poisson Bracket (1.1)

Let K be the complex line bundle where the Kostant-Souriau geometric quantization operators are deened. We discuss possible prolongations of these operators to the linear superspace of the K-valued diierential forms, such that the Poisson bracket is represented by the supercommutator of the corresponding operators. We also discuss the possibility to obtain such super-geometric quantizations by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000